The rook monoid is lexicographically shellable

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar Lattices are Lexicographically Shellable

The special properties of planar posets have been studied, particularly in the 1970's by I. Rival and others. More recently, the connection between posets, their corresponding polynomial rings and corresponding simplicial complexes has been studied by R. Stanley and others. This paper, using work of A. Bjorner, provides a connection between the two bodies of work, by characterizing when planar...

متن کامل

Representations of the rook monoid

Let n be a positive integer and let n = {1, . . . , n}. Let R be the set of all oneto-one maps σ with domain I (σ ) ⊆ n and range J (σ) ⊆ n. If i ∈ I (σ ) let iσ denote the image of i under σ . There is an associative product (σ, τ ) → στ on R defined by composition of maps: i(στ)= (iσ )τ if i ∈ I (σ ) and iσ ∈ I (τ ). Thus the domain I (στ) consists of all i ∈ I (σ ) such that iσ ∈ I (τ ). The...

متن کامل

Fast Fourier Transforms for the Rook Monoid

We define the notion of the Fourier transform for the rook monoid (also called the symmetric inverse semigroup) and provide two efficient divideand-conquer algorithms (fast Fourier transforms, or FFTs) for computing it. This paper marks the first extension of group FFTs to non-group semigroups.

متن کامل

Pattern Avoidance in the Rook Monoid

We consider two types of pattern avoidance in the rook monoid, i.e. the set of 0–1 square matrices with at most one nonzero entry in each row and each column. For one-dimensional rook patterns, we completely characterize monoid elements avoiding a single pattern of length at most three and develop an enumeration scheme algorithm to study rook placements avoiding sets of patterns.

متن کامل

Representation theory of q-rook monoid algebras

We show that, over an arbitrary field, q-rook monoid algebras are iterated inflations of Iwahori-Hecke algebras, and, in particular, are cellular. Furthermore we give an algebra decomposition which shows a q-rook monoid algebra is Morita equivalent to a direct sum of Iwahori-Hecke algebras. We state some of the consequences for the representation theory of q-rook monoid algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2019

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2019.05.009